skip to main content


Search for: All records

Creators/Authors contains: "Schwope, Axel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    J191213.72 − 441045.1 is a binary system composed of a white dwarf and an M-dwarf in a 4.03-h orbit. It shows emission in radio, optical, and X-ray, all modulated at the white dwarf spin period of 5.3 min, as well as various orbital sideband frequencies. Like in the prototype of the class of radio-pulsing white dwarfs, AR Scorpii, the observed pulsed emission seems to be driven by the binary interaction. In this work, we present an analysis of far-ultraviolet spectra obtained with the Cosmic Origins Spectrograph at the Hubble Space Telescope, in which we directly detect the white dwarf in J191213.72 − 441045.1. We find that the white dwarf has a temperature of Teff = 11485 ± 90 K and mass of 0.59 ± 0.05 M⊙. We place a tentative upper limit on the magnetic field of ≈50 MG. If the white dwarf is in thermal equilibrium, its physical parameters would imply that crystallization has not started in the core of the white dwarf. Alternatively, the effective temperature could have been affected by compressional heating, indicating a past phase of accretion. The relatively low upper limit to the magnetic field and potential lack of crystallization that could generate a strong field pose challenges to pulsar-like models for the system and give preference to propeller models with a low magnetic field. We also develop a geometric model of the binary interaction which explains many salient features of the system.

     
    more » « less
    Free, publicly-accessible full text available November 9, 2024
  2. Abstract

    We present time‐resolved photometry of the cataclysmic variable PTF1J2224+17 obtained during four nights in October 2018 and January 2019 from Inastars observatory. The object is variable on a period of 103.82 min. Archival Catalina Real‐Time Transient Survey (CRTS), Palomar Transient Factory, and Zwicky Transient Facility‐data show frequent changes between high and low states. Based on its photometric properties and the cyclotron humps in the identification spectrum the object is certainly classified as an AM Herculis star (or polar) with a likely magnetic field strength ofB ∼ 65 MG. Its accretion duty cycle was estimated from 9 years of photometric monitoring to be about 35%.

     
    more » « less
  3. Abstract

    Optical surveys, such as the MACHO project, often uncover variable stars whose classification requires follow‐up observations by other instruments. We performed X‐ray spectroscopy and photometry of the unusual variable star MACHO 311.37557.169 withXMM‐Newtonin April 2018, supplemented by archival X‐ray and optical spectrographic data. The star has a bolometric X‐ray luminosity of about 1 × 1032 erg s−1 cm−2and a heavily absorbed two‐temperature plasma spectrum. The shape of its light curve, its overall brightness, its X‐ray spectrum, and the emission lines in its optical spectrum suggest that it is most likely a VY Scl cataclysmic variable.

     
    more » « less
  4. Abstract The eighteenth data release (DR18) of the Sloan Digital Sky Survey (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs or “Mappers”: the Milky Way Mapper (MWM), the Black Hole Mapper (BHM), and the Local Volume Mapper. This data release contains extensive targeting information for the two multiobject spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration and scientifically focused components. DR18 also includes ∼25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  5. Abstract This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys. 
    more » « less
  6. null (Ed.)